
6-1

Chapter 6

SQL – Data Manipulation



6-2

Chapter 6 - Objectives

Th purpose and importance of SQL.

The history and development of SQL.

How to write an SQL command.

How to retrieve data from database using
SELECT.

How to update database using INSERT,
UPDATE, and DELETE.



6-3

Chapter 6 - Objectives

How to build SQL statements that:
use the WHERE clause to retrieve rows that
satisfy various conditions;

sort query results using ORDER BY;

use the aggregate functions of SQL;

group data using GROUP BY;

join tables together;

perform set operations (UNION, INTERSECT,
EXCEPT).

Over the last few years, SQL has become the 
standard relational database language. 



6-4

Introduction to SQL

Ideally, database language should allow user to:
create the database and relation structures;

perform insertion, modification, deletion of data
from relations;

perform simple and complex queries.

Must perform these tasks with minimal user
effort

Command structure/syntax must be easy to
learn.

It must be portable.

SQL is intended to satisfy these requirements.



6-5

Introduction to SQL

SQL is a transform-oriented language (using
relation to transform input to output) with 2
major components:

A DDL for defining database structure.

A DML for retrieving and updating data.

Until SQL:1999 (SQL3), SQL did not contain
flow of control commands. These had to be
implemented using a programming or job-
control language, or interactively by the
decisions of user.



6-6

SQL is Relatively Easy to Learn

It is non-procedural – you specify what
information you require, rather than how
to get it;

Like most modern languages, it is
essentially free-format – position of the
text doesn’t matter;



6-7

SQL is Relatively Easy to Learn

The command structure consists of standard
English words:

1) CREATE TABLE Staff ( staffNo VARCHAR(5),

lName VARCHAR(15),

salary DECIMAL(7,2) );

2) INSERT INTO Staff VALUES (‘SG16’, ‘Brown’, 8300);

3) SELECT staffNo, lName, salary

FROM Staff

WHERE salary > 10000;



6-8

SQL is Relatively Easy to Learn

Can be used by a range of users including
DBAs, management personnel, application
developers, and other types of end users.

An ISO standard now exists for SQL, making it
both the formal and de facto standard
language for relational databases.



6-9

History of SQL

In 1974, D. Chamberlin (IBM San Jose
Laboratory) defined a language called
‘Structured English Query Language’
(SEQUEL).

A revised version, SEQUEL/2, was defined in
1976 but name was subsequently changed to
SQL for legal reasons.



6-10

History of SQL

Still pronounced ‘see-quel’, though official
pronunciation is ‘S-Q-L’.

IBM subsequently produced a prototype
DBMS called System R, based on SEQUEL/2.

Roots of SQL, however, are in SQUARE
(Specifying Queries as Relational Expressions),
which predates System R project.



6-11

History of SQL
In late 70s, ORACLE appeared and was probably first
commercial RDBMS based on SQL.

In 1987, ANSI and ISO published an initial standard for
SQL.

In 1989, ISO published an addendum that defined an
‘Integrity Enhancement Feature’.

In 1992, first major revision to ISO standard occurred,
referred to as SQL2 or SQL/92.

In 1999, SQL:1999 was released with support for
object-oriented data management.

In late 2003, SQL:2003 was released.

In summer 2008, SQL:2008 was released.

In late 2011, SQL:2011 was released.



6-12

Importance of SQL

SQL is the first and, so far, only standard
database language to gain wide acceptance.

SQL has become part of application
architectures such as IBM’s Systems
Application Architecture.

It is strategic choice of many large and
influential organizations (e.g. X/OPEN).

SQL is Federal Information Processing
Standard (FIPS) to which conformance is
required for all sales of databases to American
Government.



6-13

Importance of SQL

SQL is used in other standards and even
influences development of other standards as
a definitional tool. Examples include:

ISO’s Information Resource Directory System
(IRDS) Standard

Remote Data Access (RDA) Standard.



6-14

SQL Terminology

The ISO SQL standard does not use the formal
terms of relations, attributes, and tuples,
instead using the terms tables, columns, and
rows.

SQL does not adhere strictly to the definition
of the relational model.

It allows the table produced as the result of the
SELECT statement to contain duplicate rows.

It imposes an ordering on the columns, and it
allows the user to order the rows of a result
table.



6-15

Writing SQL Commands

SQL statement consists of reserved words and
user-defined words.
– Reserved words are a fixed part of SQL and have

a fixed meaning. They must be spelt exactly as
required and cannot be split across lines.

– User-defined words are made up by user and
represent names of various database objects
such as relations, columns, views.

The words in a statement are built according
to a set of syntax rules. SQL ends the
statement usually with the semicolon “;”.



6-16

Writing SQL Commands

Most components of an SQL statement are
case insensitive, except for literal character
data.

More readable with indentation and
lineation:

Each clause should begin on a new line.

Start of a clause should line up with start of other
clauses.

If clause has several parts, should each appear on
a separate line and be indented under start of
clause to show the relationship.



6-17

Writing SQL Commands

Use extended form of BNF notation:

Upper-case letters represent reserved words.

Lower-case letters represent user-defined words.

| indicates a choice among alternatives. ( a|b|c )

Curly braces indicate a required element. {a}

Square brackets indicate an optional element. [a]

… indicates optional repetition (0 or more).

{ a|b } [, c…] :

means either a or b followed by zero or more
repetitions of c separated by commas.



6-18

Literals

Literals are constants used in SQL statements.

All non-numeric literals must be enclosed in
single quotes (e.g. ‘London’).

All numeric literals must not be enclosed in
quotes (e.g. 650.00).

E.g.
INSERT INTO PropertyForRent ( propertyNo, street, city,

postcode, type, rooms, rent, ownerNo,
staffNo, branchNo)

VALUES ( ‘PA14’, ‘16 Holhead’, ‘Aberdeen’,

‘AB7 5SU’, ‘House’, 6, 650.00, ‘CO46’, ‘SA9’,
‘B007’);



6-19

SELECT Statement

The purpose is to retrieve and display data from one
or more database tables. It is capable of performing
the equivalent of the relational algebra’s Selection,
Projection, and Join operations in a single statement.

SELECT [DISTINCT | ALL]

{* | [columnExpression [AS newName]] [,...] }

FROM TableName [alias] [, ...]

[WHERE condition]

[GROUP BY columnList] [HAVING condition]

[ORDER BY columnList]



6-20

Sequence of Processing in SELECT

FROM Specifies table(s) to be used.

WHERE Filters rows.

GROUP BY Forms groups of rows with same

column value.

HAVING Filters groups subject to some

condition.

SELECT Specifies which columns are to

appear in output.

ORDER BY Specifies the order of the output.



6-21

SELECT Statement

Order of the clauses cannot be changed.

Only SELECT and FROM are mandatory.

The SELECT operation is closed: the result of a
query on a table is another table



6-22

Example 6.1 All Columns, All Rows

List full details of all staff.

SELECT staffNo, fName, lName, address,

position, sex, DOB, salary, branchNo

FROM Staff;

• Can use * as an abbreviation for ‘all columns’:

SELECT *

FROM Staff;



6-23

Example 6.1 All Columns, All Rows



6-24

Example 6.2 Specific Columns, All Rows

Produce a list of salaries for all staff, showing
only staff number, first and last names, and
salary.

SELECT staffNo, fName, lName, salary

FROM Staff;



6-25

Example 6.2 Specific Columns, All Rows



6-26

Example 6.3 Use of DISTINCT

List the property numbers of all properties
that have been viewed.

SELECT propertyNo

FROM Viewing;

Unlike Projection operation,

SELECT doesn’t eliminate

the duplicates.



6-27

Example 6.3  Use of DISTINCT

Use DISTINCT to eliminate duplicates:

SELECT DISTINCT propertyNo

FROM Viewing;



6-28

Example 6.4 Calculated Fields

Produce list of monthly salaries for all staff,
showing staff number, first/last name, and
salary.

SELECT staffNo, fName, lName, salary/12

FROM Staff;

The column name

for the expression is

the column # in the

table.



6-29

Example 6.4 Calculated Fields

To name column, use AS clause:

SELECT staffNo, fName, lName, salary/12 

AS monthlySalary

FROM Staff;



6-30

Row selection (WHERE clause)

The previous examples show the use of the 
SELECT statement to retrieve all rows from a 
table.

We often need to restrict the rows that are 
retrieved. This can be achieved with the 
WHERE clause, which consists of the keyword 
WHERE followed by a search condition that 
specifies the rows to be retrieved.

There are five basic search conditions.



6-31

Example 6.5 Comparison Search Condition

List all staff with a salary greater than 10,000.

SELECT staffNo, fName, lName, position, salary

FROM Staff

WHERE salary > 10000;



6-32

Example 6.6 Compound Comparison Search
Condition

List addresses of all branch offices in London
or Glasgow.

SELECT *

FROM Branch

WHERE city = ‘London’ OR city = ‘Glasgow’;



6-33

Example 6.7 Range Search Condition

List all staff with a salary between 20,000 and
30,000.

SELECT staffNo, fName, lName, position, salary

FROM Staff

WHERE salary BETWEEN 20000 AND 30000;

BETWEEN test includes the endpoints of
range.



6-34

Example 6.7 Range Search Condition



6-35

Example 6.7 Range Search Condition

There is also a negated version NOT
BETWEEN.

BETWEEN does not add much to SQL’s
expressive power. Could also write:

SELECT staffNo, fName, lName, position, salary

FROM Staff

WHERE salary>=20000 AND salary <= 30000;

Simpler, though, for testing a range of values.



6-36

Example 6.8 Set Membership

List all managers and supervisors.

SELECT staffNo, fName, lName, position

FROM Staff

WHERE position IN (‘Manager’, ‘Supervisor’);



6-37

Example 6.8 Set Membership

There is a negated version (NOT IN).

IN does not add much to SQL’s expressive
power. Could have expressed this as:

SELECT staffNo, fName, lName, position

FROM Staff

WHERE position=‘Manager’ OR

position=‘Supervisor’;

But IN is more efficient when set contains
many values.



6-38

Example 6.9 Pattern Matching

Find all owners with the string ‘Glasgow’ in
their address.

SELECT ownerNo, fName, lName, address, telNo

FROM PrivateOwner

WHERE address LIKE ‘%Glasgow%’;



6-39

Example 6.9 Pattern Matching

SQL has two special pattern matching
symbols:

%: sequence of zero or more characters;

_ (underscore): any single character.

LIKE ‘%Glasgow%’ means a sequence of
characters of any length containing ‘Glasgow’.



6-40

Example 6.10 NULL Search Condition

List details of all viewings on property PG4
where a comment has not been supplied.

• There are 2 viewings for property PG4, one
with and one without a comment.

• Have to test for null explicitly using special
keyword IS NULL:

SELECT clientNo, viewDate

FROM Viewing

WHERE propertyNo = ‘PG4’ AND

comment IS NULL;



6-41

Example 6.10 NULL Search Condition

Negated version (IS NOT NULL) can
test for non-null values.



6-42

Sorting Results (ORDER BY Clause)
In general, the rows of an SQL query result table are 
not arranged in any particular order.

However, we can ensure the results of a query are 
sorted using the ORDER BY clause.

The ORDER BY clause consists of a list of column ids 
that the result is to be sorted on, separated by 
commas.

A column id may be either a column name or a column 
number according to its position in the SELECT list.

The sort can be ascending (ASC) or descending (DESC).

The ORDER BY clause must always be the last clause of 
the SELECT statement.



6-43

Example 6.11 Single Column Ordering

List salaries for all staff, arranged in
descending order of salary.

SELECT staffNo, fName, lName, salary

FROM Staff

ORDER BY salary DESC;



6-44

Example 6.11 Single Column Ordering



6-45

Example 6.12 Multiple Column Ordering

Produce abbreviated list of properties in order
of property type.

SELECT propertyNo, type, rooms, rent

FROM PropertyForRent

ORDER BY type;



6-46

Example 6.12  Multiple Column Ordering



6-47

Example 6.12  Multiple Column Ordering

Four flats in this list - as no minor sort key is
specified, system arranges these rows in any
order it chooses.

To arrange in order of rent, specify minor
order:

SELECT propertyNo, type, rooms, rent

FROM PropertyForRent

ORDER BY type, rent DESC;



6-48

Example 6.12 Multiple Column Ordering



6-49

SELECT Statement - Aggregates

➢ ISO standard defines five aggregate functions:
❑ COUNT returns number of values in specified

column.

❑ SUM returns sum of values in specified column.

❑ AVG returns average of values in specified
column.

❑MIN returns smallest value in specified column.

❑MAX returns largest value in specified column.

➢ They are similar to the totals at the bottom of
a report.



6-50

SELECT Statement - Aggregates

Each operates on a single column of a table
and returns a single value.

COUNT, MIN, and MAX apply to numeric and
non-numeric fields, but SUM and AVG may
be used on numeric fields only.

Apart from COUNT(*), each function
eliminates nulls first and operates only on
remaining non-null values.



6-51

SELECT Statement - Aggregates

COUNT(*) counts all rows of a table,
regardless of whether nulls or duplicate
values occur.

Can use DISTINCT before column name to
eliminate duplicates.

DISTINCT has no effect with MIN/MAX, but
may have with SUM/AVG.



6-52

SELECT Statement - Aggregates

Aggregate functions can be used only in
SELECT list and in HAVING clause.

If SELECT list includes an aggregate function
and there is no GROUP BY clause, SELECT list
cannot reference a column outside an
aggregate function. For example, the
following is illegal:

SELECT staffNo, COUNT(salary)

FROM Staff;



6-53

Example 6.13 Use of COUNT(*)

How many properties cost more than £350
per month to rent?

SELECT COUNT(*) AS myCount

FROM PropertyForRent

WHERE rent > 350;



6-54

Example 6.14 Use of COUNT(DISTINCT)

How many different properties were viewed in
May 2013?

SELECT COUNT(DISTINCT propertyNo) AS myCount

FROM Viewing

WHERE viewDate BETWEEN ‘1-May-13’

AND ‘31-May-13’;



6-55

Example 6.15 Use of COUNT and SUM

Find number of Managers and sum of their
salaries.

SELECT COUNT(staffNo) AS myCount,

SUM(salary) AS mySum

FROM Staff

WHERE position = ‘Manager’;



6-56

Example 6.16 Use of MIN, MAX, AVG

Find minimum, maximum, and average
staff salary.

SELECT MIN(salary) AS myMin,

MAX(salary) AS myMax,

AVG(salary) AS myAvg

FROM Staff;



6-57

SELECT Statement - Grouping

The previous summary queries condense all
the detailed data into a single row of data.

Use GROUP BY clause to get sub-totals.

SELECT and GROUP BY closely integrated:
each item in SELECT list must be single-
valued per group, and SELECT clause may
only contain:

column names

aggregate functions

constants

expression involving combinations of the above.



6-58

SELECT Statement - Grouping

All column names in SELECT list must appear
in GROUP BY clause unless name is used only
in an aggregate function.

If WHERE is used with GROUP BY, WHERE is
applied first, then groups are formed from
remaining rows satisfying the search
condition.

ISO considers two nulls to be equal for
purposes of GROUP BY.



6-59

Example 6.17  Use of GROUP BY

Find number of staff in each branch and
their total salaries.

SELECT branchNo,

COUNT(staffNo) AS myCount,

SUM(salary) AS mySum

FROM Staff

GROUP BY branchNo

ORDER BY branchNo;



6-60

Example 6.17  Use of GROUP BY



6-61

Restricted Groupings – HAVING clause

HAVING clause is designed for use with 
GROUP BY to restrict groups that appear in 
final result table. 

Similar to WHERE clause, but WHERE clause
filters individual rows whereas HAVING
clause filters groups.

Column names in HAVING clause must also
appear in the GROUP BY list or be contained
within an aggregate function.

HAVING clause is not a necessary part of SQL.



6-62

Example 6.18  Use of HAVING

For each branch with more than 1 member
of staff, find number of staff in each branch
and sum of their salaries.

SELECT branchNo,

COUNT(staffNo) AS myCount,

SUM(salary) AS mySum

FROM Staff

GROUP BY branchNo

HAVING COUNT(staffNo) > 1

ORDER BY branchNo;



6-63

Example 6.18  Use of HAVING



6-64

Subqueries

Some SQL statements can have a SELECT
embedded within them.

A subselect can be used in WHERE and
HAVING clauses of an outer SELECT, where it
is called a subquery or nested query.

Subselects may also appear in INSERT,
UPDATE, and DELETE statements.



6-65

Three Types of Subquery

A scalar subquery returns a single column and a 
single row, that is, a single value. In principle, a 
scalar subquery can be used whenever a single 
value is needed.

A row subquery returns multiple columns, but 
only a single row. A row subquery can be used 
whenever a row value constructor is needed.

A table subquery returns one or more columns 
and multiple rows. A table subquery can be 
used whenever a table is needed.



6-66

Example 6.19  Subquery with Equality

List staff who work in branch at ‘163 Main St’.

SELECT staffNo, fName, lName, position

FROM Staff

WHERE branchNo =

(SELECT branchNo

FROM Branch

WHERE street = ‘163 Main St’);

There will be only one such branch number,
so this is an example of a scalar subquery.



6-67

Example 6.19  Subquery with Equality

Inner SELECT finds branch number for branch
at ‘163 Main St’ (‘B003’).

Outer SELECT then retrieves details of all staff
who work at this branch.

Outer SELECT then becomes:

SELECT staffNo, fName, lName, position

FROM Staff

WHERE branchNo = ‘B003’;



6-68

Example 6.19  Subquery with Equality

Result table:



6-69

Example 6.20  Subquery with Aggregate

List all staff whose salary is greater than the average 
salary and show by how much.

SELECT staffNo, fName, lName, position, 

  salary – (SELECT AVG(salary) FROM Staff) As SalDiff

FROM Staff

WHERE salary >

  (SELECT AVG(salary)

   FROM Staff);



6-70

Example 6.20  Subquery with Aggregate

Cannot write ‘WHERE salary > AVG(salary)’ 
because aggregate functions cannot be used 
in the WHERE clause. 

Instead, use subquery to find average salary 
(17000), and then use outer SELECT to find 
those staff with salary greater than this:

SELECT staffNo, fName, lName, position, 

     salary – 17000 As salDiff

FROM Staff

WHERE salary > 17000;



6-71

Example 6.20  Subquery with Aggregate

Result table:



6-72

Subquery Rules

ORDER BY clause may not be used in a 
subquery (although it may be used in 
outermost SELECT).

Subquery SELECT list must consist of a single 
column name or expression, except for 
subqueries that use EXISTS.

By default, column names refer to table 
name in FROM clause of subquery. It is 
possible to refer to a table in a FROM clause 
of an outer query by qualifying the column 
name using alias (see example 6.24).



6-73

Subquery Rules

When subquery is an operand in a 
comparison, subquery must appear on right-
hand side. For example, the following is 
incorrect:

SELECT staffNo, fName, IName, position, salary 
FROM Staff 
WHERE (SELECT AVG(salary) FROM Staff) < salary;



6-74

Example 6.21  Nested subquery: use of IN

List properties handled by staff at ‘163 Main St’.

SELECT propertyNo, street, city, postcode, type, rooms, rent

FROM PropertyForRent

WHERE staffNo IN

(SELECT staffNo

 FROM Staff

 WHERE branchNo =

  (SELECT branchNo

   FROM Branch

   WHERE street = ‘163 Main St’));

Since there may be more than one staffNo found, we cannot use 
the equality condition (=) in the outermost query.



6-75

Example 6.21  Nested subquery: use of IN

Result table:



6-76

ANY and ALL

ANY and ALL may be used with subqueries 
that produce a single column of numbers. 

With ALL, condition will only be true if it is 
satisfied by all values produced by subquery. 

With ANY, condition will be true if it is 
satisfied by any values produced by 
subquery. 

If subquery is empty, ALL returns true, ANY 
returns false. 

SOME may be used in place of ANY.



6-77

Example 6.22  Use of ANY/SOME

Find staff whose salary is larger than salary of 
at least one member of staff at branch B003.

   SELECT staffNo, fName, lName, position, salary

 FROM Staff

 WHERE salary > SOME

    (SELECT salary

     FROM Staff

     WHERE branchNo = ‘B003’);



6-78

Example 6.22  Use of ANY/SOME

Inner query produces set {12000, 18000, 
24000} and outer query selects those staff 
whose salaries are greater than any of the 
values in this set (that is, greater than the 
minimum value, 12000) .

Result table:



6-79

Example 6.23  Use of ALL

Find staff whose salary is larger than salary 
of every member of staff at branch B003.

      SELECT staffNo, fName, lName, position, salary

 FROM Staff

 WHERE salary > ALL

    (SELECT salary

     FROM Staff

     WHERE branchNo = ‘B003’);



6-80

Example 6.23  Use of ALL

Result table:



6-81

Multi-Table Queries

To obtain information from more than one 
table, either use a subquery or a join. 

Can use subqueries if result columns come 
from same table.

If result columns come from more than one 
table, a join must be used.

To perform join, include more than one table 
in FROM clause, using a comma as a 
separator and typically including a WHERE 
clause to specify join column(s). 



6-82

Multi-Table Queries

It is also possible to use an alias for a table 
named in FROM clause. 

Alias is separated from table name with a 
space. 

Alias can be used to qualify column names 
when there is ambiguity.



6-83

Example 6.24  Simple Join

List names of all clients who have viewed a 
property along with any comment supplied.

     SELECT c.clientNo, fName, lName,

                    propertyNo, comment

 FROM Client c, Viewing v

 WHERE c.clientNo = v.clientNo;



6-84

Example 6.24  Simple Join

Only those rows from both tables that have 
identical values in the clientNo columns 
(c.clientNo = v.clientNo) are included in result. 

Equivalent to equi-join in relational algebra.

Result table:



6-85

Alternative JOIN Constructs

SQL provides alternative ways to specify joins:

 FROM Client c JOIN Viewing v ON c.clientNo = v.clientNo

 FROM Client JOIN Viewing USING clientNo

 FROM Client NATURAL JOIN Viewing

In each case, FROM replaces original FROM 
and WHERE. However, the first alternative 
produces table with two identical clientNo 
columns.



6-86

Example 6.25  Sorting a join

For each branch, list numbers and names of 
staff who manage properties, and properties 
they manage.

  SELECT s.branchNo, s.staffNo, fName, lName,

                propertyNo

FROM Staff s, PropertyForRent p

WHERE s.staffNo = p.staffNo

ORDER BY s.branchNo, s.staffNo, propertyNo;



6-87

Example 6.25  Sorting a join

Result table:



6-88

Example 6.26  Three Table Join

For each branch, list staff who manage 
properties, including city in which branch is 
located and properties they manage.

     SELECT b.branchNo, b.city, s.staffNo, fName, lName,

                   propertyNo

   FROM Branch b, Staff s, PropertyForRent p

   WHERE b.branchNo = s.branchNo AND 

                   s.staffNo = p.staffNo

   ORDER BY b.branchNo, s.staffNo, propertyNo;



6-89

Example 6.26  Three Table Join

Result Table:

Alternative formulation for FROM and WHERE:

 FROM (Branch b JOIN Staff s USING branchNo) AS

              bs JOIN PropertyForRent p USING staffNo



6-90

Example 6.27  Multiple Grouping Columns

Find number of properties handled by each 
staff member.

  SELECT s.branchNo, s.staffNo, COUNT(*) AS myCount

FROM Staff s, PropertyForRent p

WHERE s.staffNo = p.staffNo

GROUP BY s.branchNo, s.staffNo

ORDER BY s.branchNo, s.staffNo;



6-91

Example 6.27  Multiple Grouping Columns

Result Table:



6-92

Computing a Join

A join is a subset of a more general combination 
of two tables known as the Cartesian product

The Cartesian product of two tables is another 
table consisting of all possible pairs of rows 
from the two tables.

SQL provides special format of SELECT for 
Cartesian product:

SELECT [DISTINCT | ALL] {* | columnList}

FROM Table1 CROSS JOIN Table2



6-93

Computing a Join

Procedure for generating results of a join are:

1. Form Cartesian product of the tables named in  
FROM clause. 

2. If there is a WHERE clause, apply the search 
condition to each row of the product table, 
retaining those rows that satisfy the condition.

3. For each remaining row, determine value of 
each item in SELECT list to produce a single row 
containing the selected columns in result table.



6-94

Computing a Join

4. If DISTINCT has been specified, eliminate any 
duplicate rows from the result table.

5. If there is an ORDER BY clause, sort result table 
as required.



6-95

Outer Joins

For a join, if one row of a joined table is 
unmatched, row is omitted from result table. 

Outer join operations retain rows that do not 
satisfy the join condition. 

Consider following simplified Branch and 
PropertyForRent tables:

       



6-96

Outer Joins

The (inner) join of these two tables:

 SELECT b.*, p.*

FROM Branch1 b, PropertyForRent1 p

WHERE b.bCity = p.pCity;

• Result Table:



6-97

Outer Joins

Result table has two rows where cities are 
same. 

There are no rows corresponding to 
branches in Bristol and Aberdeen. 

To include unmatched rows in result table, 
use an Outer join.

There are three types of Outer join: Left, 
Right, and Full Outer joins.



6-98

Example 6.28  Left Outer Join

List branches and properties that are in same 
city along with any unmatched branches.

  SELECT b.*, p.*

  FROM Branch1 b LEFT JOIN

   PropertyForRent1 p ON b.bCity = p.pCity;



6-99

Example 6.28  Left Outer Join

Includes those rows of first (left) table 
unmatched with rows from second (right) 
table. 

Columns from second table are filled with 
NULLs.



6-100

Example 6.29  Right Outer Join

List branches and properties in same city and 
any unmatched properties.

       SELECT b.*, p.*

 FROM Branch1 b RIGHT JOIN

   PropertyForRent1 p ON b.bCity = p.pCity;



6-101

Example 6.29  Right Outer Join

Right Outer join includes those rows of 
second (right) table that are unmatched with 
rows from first (left) table. 

Columns from first table are filled with 
NULLs.



6-102

Example 6.30  Full Outer Join

List branches and properties in same city and 
any unmatched branches or properties.

       SELECT b.*, p.*

 FROM Branch1 b FULL JOIN 

  PropertyForRent1 p ON b.bCity = p.pCity;



6-103

Example 6.30  Full Outer Join

Includes rows that are unmatched in both 
tables. 

Unmatched columns are filled with NULLs. 



6-104

EXISTS and NOT EXISTS

EXISTS and NOT EXISTS are for use only with 
subqueries. 

Produce a simple true/false result. 

True if and only if there exists at least one 
row in result table returned by subquery.

False if subquery returns an empty result 
table. 

NOT EXISTS is the opposite of EXISTS. 



6-105

EXISTS and NOT EXISTS

As (NOT) EXISTS check only for existence or 
non-existence of rows in subquery result table, 
subquery can contain any number of columns. 

Common for subqueries following (NOT) 
EXISTS to be of form:

  (SELECT * ...)



6-106

Example 6.31 Query using EXISTS

Find all staff who work in a London branch.

     SELECT staffNo, fName, lName, position

  FROM Staff s

  WHERE EXISTS

  (SELECT *

   FROM Branch b

   WHERE s.branchNo = b.branchNo AND 

         city = ‘London’);



6-107

Example 6.31 Query using EXISTS

Result Table:



6-108

Example 6.31 Query using EXISTS

Note, search condition s.branchNo = 
b.branchNo is necessary to consider correct 
branch record for each member of staff. 

If omitted, would get all staff records listed 
out because subquery:

SELECT * FROM Branch WHERE city=‘London’

    would always be true and query would be:

SELECT staffNo, fName, lName, position FROM Staff

WHERE true;



6-109

Example 6.31 Query using EXISTS

Could also write this query using join 
construct:

SELECT staffNo, fName, lName, position

FROM Staff s, Branch b

WHERE s.branchNo = b.branchNo AND 

                city = ‘London’;



6-110

Union, Intersect, and Difference (Except)

Can use normal set operations of Union, 
Intersection, and Difference to combine results 
of two or more queries into a single result table.

Union of two tables, A and B, is a table 
containing all rows in either A or B or both. 

Intersection of A and B is a table containing all 
rows common to both A and B. 

Difference of A and B is a table containing all 
rows in A but not in B. 

Table A and B must be union compatible – 
having the same structure.



6-111

Union, Intersect, and Difference (Except)



6-112

Union, Intersect, and Difference (Except)

Format of set operator clause in each case is:

op [ALL] [CORRESPONDING [BY {column1 [, ...]}]]

If CORRESPONDING BY specified, set operation 
performed on the named column(s).

If CORRESPONDING specified but not BY 
clause, operation performed on common 
columns. 

If ALL specified, result can include duplicate 
rows.



6-113

Example 6.32 Use of UNION

List all cities where there is either a branch 
office or  a property.

   (SELECT city

  FROM Branch

  WHERE city IS NOT NULL) UNION

  (SELECT city

  FROM PropertyForRent

  WHERE city IS NOT NULL);



6-114

Example 6.32 Use of UNION

Or

   (SELECT *
  FROM Branch
  WHERE city IS NOT NULL)
  UNION CORRESPONDING BY city
  (SELECT *
  FROM PropertyForRent
  WHERE city IS NOT NULL);

The ability to write a query in several 
equivalent forms illustrates one of the 
disadvantages of the SQL language.



6-115

Example 6.32 Use of UNION

Produces result tables from both queries and 
merges both tables together.

Duplicate rows are removed.

Result Table:



6-116

Example 6.33 Use of INTERSECT

List all cities where there is both a branch 
office and a property.

      (SELECT city FROM Branch)

 INTERSECT

 (SELECT city FROM PropertyForRent);



6-117

Example 6.33 Use of INTERSECT

Or

 (SELECT * FROM Branch)

 INTERSECT CORRESPONDING BY city

 (SELECT * FROM PropertyForRent);



6-118

Example 6.33 Use of INTERSECT

Could rewrite this query without INTERSECT 
operator:

 SELECT b.city

 FROM Branch b, PropertyForRent p

 WHERE b.city = p.city;

Or:
   SELECT DISTINCT city FROM Branch b

 WHERE EXISTS

  (SELECT * FROM PropertyForRent p

  WHERE p.city = b.city);



6-119

Example 6.34 Use of EXCEPT

List of all cities where there is a branch office 
but no  properties.

  (SELECT city FROM Branch)

EXCEPT

(SELECT city FROM PropertyForRent);

Or

(SELECT * FROM Branch)

EXCEPT CORRESPONDING BY city

(SELECT * FROM PropertyForRent);



6-120

Example 6.34 Use of EXCEPT

Could rewrite this query without EXCEPT:

 SELECT DISTINCT city FROM Branch

 WHERE city NOT IN

  (SELECT city FROM PropertyForRent);

Or

 SELECT DISTINCT city FROM Branch b

 WHERE NOT EXISTS

  (SELECT * FROM PropertyForRent p

  WHERE p.city = b.city);



6-121

SQL Statements to Modify Data

The commands for modifying the database are 
not as complex as the SELECT statement.

INSERT – adds new rows of data to a table

UPDATE – modifies existing data in a table

DELETE – removes rows of data from a table



6-122

INSERT

• INSERT has two forms. The first allows a single row to 
be inserted into a named table and has the following 
format:

  INSERT INTO TableName [ (columnList) ]

VALUES (dataValueList)

•  TableName may be either a base table or an 
updatable view

• columnList is optional; if omitted, SQL assumes a list of 
all columns in their original CREATE TABLE order. 

• Any columns omitted must have been declared as 
NULL when table was created, unless DEFAULT was 
specified when creating column.



6-123

INSERT

dataValueList must match columnList as 
follows:

The number of items in each list must be the 
same;

There must be a direct correspondence in the 
position of items in the two lists;

The data type of each item in dataValueList 
must be compatible with the data type of 
corresponding column.



6-124

Example 6.35 INSERT … VALUES

Insert a new row into Staff table supplying 
data for all columns.
 

  INSERT INTO Staff

VALUES (‘SG16’, ‘Alan’, ‘Brown’, ‘Assistant’, ‘M’, Date 
‘1957-05-25’, 8300, ‘B003’);



6-125

Example 6.36 INSERT using Defaults

Insert a new row into Staff table supplying 
data for all mandatory columns (excluding sex 
and DOB columns).

   INSERT INTO Staff (staffNo, fName, lName, 

                                    position, salary, branchNo)

VALUES (‘SG44’, ‘Anne’, ‘Jones’, 

                   ‘Assistant’, 8100, ‘B003’);

Or
INSERT INTO Staff

VALUES (‘SG44’, ‘Anne’, ‘Jones’, ‘Assistant’, NULL,

                    NULL, 8100, ‘B003’);



6-126

INSERT … SELECT

Second form of INSERT allows multiple rows 
to be copied from one or more tables to 
another:

 INSERT INTO TableName [ (columnList) ]

 SELECT ...

The rows inserted into the named table are 
identical to the result table produced by the 
subselect.



6-127

Example 6.37 INSERT … SELECT

Assume there is a table StaffPropCount that 
contains names of staff and number of 
properties they manage:

StaffPropCount(staffNo, fName, lName, propCnt)

 Populate StaffPropCount using Staff and 
PropertyForRent tables.



6-128

Example 6.37 INSERT … SELECT

INSERT INTO StaffPropCount

 (SELECT s.staffNo, fName, lName, COUNT(*)

 FROM Staff s, PropertyForRent p

 WHERE s.staffNo = p.staffNo

 GROUP BY s.staffNo, fName, lName)

 UNION

 (SELECT staffNo, fName, lName, 0

 FROM Staff

 WHERE staffNo NOT IN

  (SELECT DISTINCT staffNo

  FROM PropertyForRent));



6-129

Example 6.37 INSERT … SELECT

If second part of UNION is omitted, those staff 
who currently do not manage any properties 
will be excluded. 



6-130

UPDATE

• UPDATE allows the contents of existing rows 
in a named table to be changed.

UPDATE TableName 

SET columnName1 = dataValue1 

  [, columnName2 = dataValue2...]

[WHERE searchCondition]

• TableName can be name of a base table or an 
updatable view.

• SET clause specifies names of one or more 
columns that are to be updated. 



6-131

UPDATE

WHERE clause is optional:

if omitted, named columns are updated for all 
rows in table;

if specified, only those rows that satisfy 
searchCondition are updated. 

New dataValue(s) must be compatible with 
data type(s) for corresponding column(s).



6-132

Example 6.38/39 UPDATE All/Specific Rows

Give all staff a 3% pay increase.

      UPDATE Staff

   SET salary = salary*1.03;

Give all Managers a 5% pay increase.

  UPDATE Staff

 SET salary = salary*1.05

 WHERE position = ‘Manager’;



6-133

Example 6.40 UPDATE Multiple Columns

Promote David Ford (staffNo=‘SG14’) to 
Manager and change his salary to £18,000.

  UPDATE Staff

 SET position = ‘Manager’, salary = 18000

 WHERE staffNo = ‘SG14’;



6-134

DELETE

• The DELETE statement allows rows to be deleted 
from a named table.

DELETE FROM TableName 

[WHERE searchCondition]

• TableName can be name of a base table or an 
updatable view. 

• searchCondition is optional; if omitted, all rows 
are deleted from table. This doesn’t delete 
table. If search_condition is specified, only those 
rows that satisfy condition are deleted.



6-135

Example 6.41/42 DELETE Specific/All Rows

Delete all viewings that relate to property PG4.

  DELETE FROM Viewing

 WHERE propertyNo = ‘PG4’;

Delete all records from the Viewing table.

 DELETE FROM Viewing;


	Slide 1: Chapter 6
	Slide 2: Chapter 6 - Objectives
	Slide 3: Chapter 6 - Objectives
	Slide 4: Introduction to SQL
	Slide 5: Introduction to SQL
	Slide 6: SQL is Relatively Easy to Learn
	Slide 7: SQL is Relatively Easy to Learn
	Slide 8: SQL is Relatively Easy to Learn
	Slide 9: History of SQL
	Slide 10: History of SQL
	Slide 11: History of SQL
	Slide 12: Importance of SQL
	Slide 13: Importance of SQL
	Slide 14: SQL Terminology
	Slide 15: Writing SQL Commands
	Slide 16: Writing SQL Commands
	Slide 17: Writing SQL Commands
	Slide 18: Literals
	Slide 19: SELECT Statement
	Slide 20: Sequence of Processing in SELECT
	Slide 21: SELECT Statement
	Slide 22: Example 6.1  All Columns, All Rows
	Slide 23: Example 6.1  All Columns, All Rows
	Slide 24: Example 6.2  Specific Columns, All Rows
	Slide 25: Example 6.2  Specific Columns, All Rows
	Slide 26: Example 6.3  Use of DISTINCT
	Slide 27: Example 6.3  Use of DISTINCT
	Slide 28: Example 6.4  Calculated Fields
	Slide 29: Example 6.4  Calculated Fields
	Slide 30: Row selection (WHERE clause)
	Slide 31: Example 6.5  Comparison Search Condition
	Slide 32: Example 6.6  Compound Comparison Search Condition 
	Slide 33: Example 6.7  Range Search Condition
	Slide 34: Example 6.7  Range Search Condition
	Slide 35: Example 6.7  Range Search Condition
	Slide 36: Example 6.8  Set Membership
	Slide 37: Example 6.8  Set Membership
	Slide 38: Example 6.9  Pattern Matching
	Slide 39: Example 6.9  Pattern Matching
	Slide 40: Example 6.10  NULL Search Condition
	Slide 41: Example 6.10  NULL Search Condition
	Slide 42: Sorting Results (ORDER BY Clause)
	Slide 43: Example 6.11  Single Column Ordering
	Slide 44: Example 6.11  Single Column Ordering
	Slide 45: Example 6.12  Multiple Column Ordering
	Slide 46: Example 6.12  Multiple Column Ordering
	Slide 47: Example 6.12  Multiple Column Ordering
	Slide 48: Example 6.12  Multiple Column Ordering
	Slide 49: SELECT Statement - Aggregates
	Slide 50: SELECT Statement - Aggregates
	Slide 51: SELECT Statement - Aggregates
	Slide 52: SELECT Statement - Aggregates
	Slide 53: Example 6.13  Use of COUNT(*)
	Slide 54: Example 6.14  Use of COUNT(DISTINCT)
	Slide 55: Example 6.15  Use of COUNT and SUM
	Slide 56: Example 6.16  Use of MIN, MAX, AVG
	Slide 57: SELECT Statement - Grouping
	Slide 58: SELECT Statement - Grouping
	Slide 59: Example 6.17  Use of GROUP BY
	Slide 60: Example 6.17  Use of GROUP BY
	Slide 61: Restricted Groupings – HAVING clause
	Slide 62: Example 6.18  Use of HAVING
	Slide 63: Example 6.18  Use of HAVING
	Slide 64: Subqueries
	Slide 65: Three Types of Subquery
	Slide 66: Example 6.19  Subquery with Equality
	Slide 67: Example 6.19  Subquery with Equality
	Slide 68: Example 6.19  Subquery with Equality
	Slide 69: Example 6.20  Subquery with Aggregate
	Slide 70: Example 6.20  Subquery with Aggregate
	Slide 71: Example 6.20  Subquery with Aggregate
	Slide 72: Subquery Rules
	Slide 73: Subquery Rules
	Slide 74: Example 6.21  Nested subquery: use of IN
	Slide 75: Example 6.21  Nested subquery: use of IN
	Slide 76: ANY and ALL
	Slide 77: Example 6.22  Use of ANY/SOME
	Slide 78: Example 6.22  Use of ANY/SOME
	Slide 79: Example 6.23  Use of ALL
	Slide 80: Example 6.23  Use of ALL
	Slide 81: Multi-Table Queries
	Slide 82: Multi-Table Queries
	Slide 83: Example 6.24  Simple Join
	Slide 84: Example 6.24  Simple Join
	Slide 85: Alternative JOIN Constructs
	Slide 86: Example 6.25  Sorting a join
	Slide 87: Example 6.25  Sorting a join
	Slide 88: Example 6.26  Three Table Join
	Slide 89: Example 6.26  Three Table Join
	Slide 90: Example 6.27  Multiple Grouping Columns
	Slide 91: Example 6.27  Multiple Grouping Columns
	Slide 92: Computing a Join
	Slide 93: Computing a Join
	Slide 94: Computing a Join
	Slide 95: Outer Joins
	Slide 96: Outer Joins
	Slide 97: Outer Joins
	Slide 98: Example 6.28  Left Outer Join
	Slide 99: Example 6.28  Left Outer Join
	Slide 100: Example 6.29  Right Outer Join
	Slide 101: Example 6.29  Right Outer Join
	Slide 102: Example 6.30  Full Outer Join
	Slide 103: Example 6.30  Full Outer Join
	Slide 104: EXISTS and NOT EXISTS
	Slide 105: EXISTS and NOT EXISTS
	Slide 106: Example 6.31  Query using EXISTS
	Slide 107: Example 6.31  Query using EXISTS
	Slide 108: Example 6.31  Query using EXISTS
	Slide 109: Example 6.31  Query using EXISTS
	Slide 110: Union, Intersect, and Difference (Except)
	Slide 111: Union, Intersect, and Difference (Except)
	Slide 112: Union, Intersect, and Difference (Except)
	Slide 113: Example 6.32  Use of UNION
	Slide 114: Example 6.32  Use of UNION
	Slide 115: Example 6.32  Use of UNION
	Slide 116: Example 6.33  Use of INTERSECT
	Slide 117: Example 6.33  Use of INTERSECT
	Slide 118: Example 6.33  Use of INTERSECT
	Slide 119: Example 6.34  Use of EXCEPT
	Slide 120: Example 6.34  Use of EXCEPT
	Slide 121: SQL Statements to Modify Data
	Slide 122: INSERT
	Slide 123: INSERT
	Slide 124: Example 6.35  INSERT … VALUES
	Slide 125: Example 6.36  INSERT using Defaults
	Slide 126: INSERT … SELECT
	Slide 127: Example 6.37  INSERT … SELECT
	Slide 128: Example 6.37  INSERT … SELECT
	Slide 129: Example 6.37  INSERT … SELECT
	Slide 130: UPDATE
	Slide 131: UPDATE
	Slide 132: Example 6.38/39  UPDATE All/Specific Rows
	Slide 133: Example 6.40  UPDATE Multiple Columns
	Slide 134: DELETE
	Slide 135: Example 6.41/42  DELETE Specific/All Rows

